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Abstract: The Contourlet Ttransform has an efficient filter bank construction and low redundancy which makes it an 

impressive computational tool for different applications in image processing. It provides a directional multiresolution 

image representation, which is capable of capturing and representing singularities along smooth object boundaries in 

natural images. But a major disadvantage of the original Contourlet Transform is that, its basis images are not localized 

in the frequency domain.  Here, a new Contourlet Transform  is proposed as a solution. In this multiscale pyramid 

(which is defined in the frequency domain) is used against Laplacian pyramid, which is used in Counterlet Transform. 

It is observed that the resulting basis images are sharply localized in the frequency domain and exhibit smoothness 

along their main ridges in the spatial domain. Using Image Denoising, it can be shown that the proposed New 

Contourlet Transform can significantly outperform the original Transform both in terms of PSNR (by several dB’s) and 

in visual quality. 
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I. INTRODUCTION 

One of the most important tasks in image processing 

is studying and exploiting the special properties of natural 

images. The main distinguishing feature of natural images 

is that they have intrinsic geometrical structures such as 

along object boundaries. 

Previous work in Contourlet Transform, Do and 

Vetterli [1] proposed the Contourlet Transform as a 

directional multiresolution image representation that can 

efficiently capture and represent smooth object boundaries 

in natural images. The Contourlet Transform is 

constructed as a combination of the Laplacian pyramid [2] 

and the Directional Filter Banks (DFB) [3].  Conceptually, 

the flow of operation can be illustrated by Figure 1, where 

the Laplacian pyramid iteratively decomposes a 2-D image 

into lowpass and highpass subbands, and the DFB are 

applied to the highpass sub-bands to further decompose 

the frequency spectrum. 

Basically the non-ideal filters are used, but the 

resulting Contourlets do not have the desired shape 

frequency domain localization. Although the majority of 

the energy in each subband is still concentrated on the 

ideal support regions, there are also significant amount of 

aliasing components showing up at locations far away 

from the desired support. This kind of frequency aliasing 

is undesirable, since the resulting Contourlets in the spatial 

domain are not smooth along their main ridges and exhibit 

some fuzzy artifacts. 

 
Fig.1: The original Contourlet Transform with the 

resulting frequency division 

 

A pictorial explanation of the cause of this frequency non-

localization problem is explained as a solution in section 

II. The new construction of the Contourlet Transform, in 

which the non-localization problem is greatly alleviated, is 

discussed in Section III. The resulting Denoised images 

are presented in Section IV to confirm the superiority of 

the proposed new construction over the original transform.  

Conclude the paper in Section V. 
 

II. CONTOURLET NON-LOCALIZATION 

PROBLEM 

The Contourlet Transform with two levels of 

multiscale decomposition, followed by angular 

decomposition is shown in Figure 2. This is the block 

diagram of the Contourlet Transformation. In this, the 

Laplacian pyramid shown in the diagram is a simplified 

version of its actual implementation. Nevertheless, this 

simplification serves our explanation purposes 

satisfactorily. By using the multirate identities, rewrite the 

filter bank into its equivalent parallel form, as shown in 

the right part of Figure 2. In the following discussions, 

concentration has been made on channel 2 of the filter 

bank. 

 
Fig. 2: Block diagram of the Contourlet Transform with 

two levels of multiscale decomposition. Gray regions 

represent the ideal passband support of the component 

filters. Left: The iterated form. Right: The equivalent 

parallel form. 
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A more realistic illustration of one of the directional 

filters from the DFB has been shown, when non-ideal 

filters are used. Gray regions in the figure represent the 

ideal passband, and patterned regions represent the 

aliasing areas concentrated along two parallel lines 

(       ). 

Two reasons contribute to this aliasing effect. The 

first one is due to the periodicity of 2-D frequency 

spectrums of discrete signals. In Figure 3(a), the patterned 

regions marked by p are actually the transition bands of 

the wedge-shaped filters, folded back through 2π 

periodization. The other reason is intrinsic to the 

frequency partitioning of the DFB. Using the argument of 

permissible passband supports proposed by Chen and 

Vaidyanathan [5], in that perfect reconstruction and 

frequency domain localization cannot be achieved 

simultaneously by a critically-sampled filter bank with the 

frequency partitioning of the DFB. In other words, since 

the DFB are critically-sampled and have perfect 

reconstruction, their component filters must exhibit 

aliasing components outside the desired passband regions. 

When the DFB is combined with a multiscale 

decomposition as in the Contourlet Transform, the aliasing 

problem becomes a serious issue. For instance, to calculate 

the equivalent filter of the second channel in Figure 2, the 

directional filter must first be upsampled by 2 along each 

dimension, as shown in Figure 3(b). As a result of the 

upsampling, the aliasing components (again represented 

by the patterned-regions in the figure) are folded towards 

the lowpass regions and are concentrated mostly along two 

lines (    
 

 
 ). Combining the upsampled DFB with 

the bandpass filter as shown in Figure 3(c), results in the 

Contourlet subband filter for channel 2 as shown in Figure 

3(d), and then the Contourlets are not localized in 

frequency, with substantial amount of aliasing components 

outside  the desired trapezoid-shaped support. 

 
Fig. 3: Illustration of the frequency domain aliasing 

problem of the Contourlet Transforms. Gray regions 

represent the ideal passband support. Patterned regions 

represent the aliasing components or transition bands. (a) 

One directional filter. (b) The directional filter after being 

upsampled by 2 along each dimension. (c) A bandpass 

filter from the Laplacian pyramid. (d) The resulting 

Contourlet subband. 

III. A NEW PROPOSED CONTOURLET 

WITH FREQUENCY LOCALIZATION 

Here, the new construction of the Contourlet 

Transform is proposed. DFB for directional decomposition 

is still used. However, an important distinction from the 

original Contourlet Transform is that, instead of using the 

Laplacian pyramid, the new pyramid structure for the 

multiscale decomposition is used. In the diagram, we use 

     (i = 0, 1) to represent the lowpass filters and      (i 
= 0, 1) to represent the highpass filters in the multiscale 

decomposition, with ω def = (ω1, ω2). 

The DFB is attached to the highpass branch at the finest 

scale and bandpass branches at all coarser scales. 

 
Fig. 4: The block diagram of the New Contourlet 

Transform. Only the analysis part is shown, while the 

synthesis part is exactly symmetric. 

The lowpass filter       in the first level is downsampled 

by d along each dimension, with d being a number to be 

determined shortly, and the lowpass filter       in the 

second level is downsampled by (2, 2). To have more level 

of decomposition, we can recursively insert at point      a 

copy of the diagram contents enclosed by the dashed 

rectangle. 

An important difference from the Laplacian 

pyramid as shown in Figure 2, the new multiscale pyramid 

can employ a different set of lowpass and highpass filters 

for the first level and all other levels. As will be seen 

shortly, this is a crucial step in reducing the frequency-

domain aliasing of the DFB. Here we specify the lowpass 

filters       (i = 0, 1) in the frequency domain as       

     
           

       , and    
      is a 1-D lowpass 

filter with passband frequency      and stopband 

frequency      and a smooth transition band, defined as 
  
      

 {

                     | |      

 

 
  

 

 
   

 | |       

         
                    | |                              

                             | |   

                                                                               

…….(1) 

For | |               
Assuming that, the aliasing introduced by the 

downsampling operations can be completely cancelled, we 

can simplify the perfect reconstruction condition for the 

multiscale pyramid as 

|     |  |     |                                
………..(2) 
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Once specified, the lowpass filters, the highpass filters 

      can be obtained from (2) to ensure perfect 

reconstruction. 
 

IV. RESULTS OF THE NEW CONSTRUCTION 

OVER THE OLD CONTOURLET 

In this section, ―Contourlet‖ is used to denote the 

original transform and the ―New Contourlet‖ to denote the 

different variants of the proposed New Contourlet 

Transform, with the numbers corresponding to their 

respective redundancy ratios. 

 
Fig. 5:  Contourlet of Basis images. (a) Frequency 

Domain. (b) Spatial Domain 

 

A. Basis Images 

In Figure 5, the frequency and spatial domain 

basis images of the New Contourlet Transform proposed 

in this paper are shown. Figure 5(a) shows that, the 

original Contourlet Transform suffers from the frequency 

non-localization problem. In sharp contrast, the new 

construction produce basis images that are well-localized 

in the frequency domain, as shown and in Figure 5(b), the 

improvement in the frequency localization is also reflected 

in the spatial domain. So the spatial regularity of 

Contourlets can be greatly improved by using the new 

construction. 

Table 1: PSNR values of the Denoised images 

 IMAGE 

      Ϭ 

(Redundancy) 

30 40 50 

Contourlet 26.8768 25.6851 24.6779 

New Contourlet 28.822 27.6917 26.7154 

B. Denoising 

In this experiment, the Denoising performance of 

the proposed New Contourlet Transform with that of the 

original transform has been compared by using the 

standard hard thresholding denoising method.. 

Table 1 shows the PSNR (in dB) of the denoised images 

by using different transforms. Although New Contourlet 

has the same redundancy ratio and similar computational 

cost as the original Contourlet Transform, it outperforms 

the latter by more than 2 dB.  

Comparison of Denoised ―Lena‖ images by using 

Contourlet and New Contourlet is shown in Fig.6 

                       
New Contourlet PSNR=28.882, at Ϭ=30 

 

          
New Contourlet PSNR=27.6917, at Ϭ=40. 

 

                     
Contourlet PSNR=26.8768, at Ϭ=30 

 

        
Contourlet PSNR=25.6851, at Ϭ=40. 

Fig. 6: Comparison of Denoised ―Lena‖ images by using 

Contourlet  and New Contourlet. 
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New Contourlet  PSNR=30.4665,   Ϭ=30 

 
New Contourlet  PSNR=29.3485,   Ϭ=40 

 
New Contourlet  PSNR=28.4255,   Ϭ=50 

 
Contourlet  PSNR=28.6661,   Ϭ=30 

 
Contourlet  PSNR=26.9247,   Ϭ=40. 

 
Contourlet  PSNR=26.2658,   Ϭ=50 

Fig.7 shows Comparison of Denoised CT Lung images by 

using Contourlet and New Contourlet. 
 

V. CONCLUSION 

In this paper, a new construction for the 

Contourlet Transform has been proposed. Compared with 

the old version, the new construction produces basis 

images with much better localization in the frequency 

domain and regularity in the spatial domain. In 

applications such as image denoising, we have shown that 

the proposed New Contourlet construction significantly 

outperforms the original transform. 
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